Divulgación de la Ciencia

Leyendo Rayuela

Leyendo Rayuela

Una de las obras maestras de la literatura latinoamericana, Rayuela de Julio Cortázar, tiene una característica muy peculiar: sus 155 capítulos pueden ser leídos en varios órdenes distintos. Cortázar mismo sugiere un par de esos órdenes, pero al menos en teoría la novela puede ser leída en cualquier orden que el lector prefiera.

Incubadoras involuntarias

Incubadoras involuntarias

En 1979, el público atestiguó el estreno de una de las obras maestras del cine de ciencia ficción: “Alien”, del director Ridley Scott. Mezclando el género de terror con los viajes interestelares, la trama sigue a la tripulación de la nave “Nostromo” en su encuentro con una forma de vida alienígena predadora extremadamente peligrosa. Para proliferar, estos seres introducen un embrión en un huésped, dentro del cual madura hasta violentamente destruirlo desde dentro al emerger en su nueva etapa de vida.

Tres matemáticos entran a un bar

Tres matemáticos entran a un bar

Ignorando todas las reglas de la comedia, les voy a explicar cómo funciona este chiste. El punto principal es que en realidad los tres matemáticos quieren beber una cerveza, pero…

Muchos pasos y contando

Muchos pasos y contando

Queridos lectores, debo hacer una confesión. A lo largo de mi vida y mi carrera he entrado en contacto con diversos insectos, arácnidos, y bichos de muchos tipos. Conocerlos desde el punto de vista científico, adentrarse en sus peculiaridades, y entender las sorpresas que guardan, me ha permitido deshacerme de buena parte de esa repulsión que la población en general tiene hacia nuestros amigos quitinizados.

Si lo mexicano es naco, y lo mexicano es chido...

Si lo mexicano es naco, y lo mexicano es chido...

Algunos lectores se acordarán de una famosa canción de Botellita de Jerez donde cantan “Si lo mexicano es naco, y lo mexicano es chido, entonces [...] todo lo naco es chido.” Para quienes no la conozcan, o quieran recordar viejas épocas, la canción la pueden escuchar aquí; la frase en cuestión aparece en el minuto 2:50 (advertencia: partes de la letra no son muy políticamente correctas).

Carpinteros de alta costura

Carpinteros de alta costura

En la naturaleza los organismos encuentran muchas formas de defenderse de sus predadores. Algunas son presentar colores de advertencia, producir olores y sabores desagradables, o desarrollar partes de su anatomía que funcionan como armaduras, como en el caso de los caracoles, tortugas, o  armadillos. En esta ocasión platicaremos de una familia de orugas que tienen una estrategia adicional: construirse una caja protectora portátil.

Medicina Genómica: La última frontera

Medicina Genómica: La última frontera

En un mundo en el que los costos de la atención médica son cada vez más elevados se vuelve una necesidad comprender la distribución y los factores determinantes de las enfermedades humanas. Aunque en muchos casos los factores ambientales pueden ser fácilmente identificados por la distribución de las enfermedades en poblaciones específicas, en muchos otros las causas de la enfermedad se extienden más allá de los factores ambientales hacia el panorama genético de la localidad.

¿Cómo funcionan las encuestas?

¿Cómo funcionan las encuestas?

En estos días está de moda hablar de encuestas. Cuando tenemos elecciones, los adultos con derecho al voto marcamos nuestra preferencia con respecto a los candidatos. Pero antes de que eso ocurra, muchos de nosotros queremos darnos una idea sobre el posible resultado. Ahí es donde aparecen las encuestas.

Selección artificial y el mejor amigo del hombre - Segunda parte

Selección artificial y el mejor amigo del hombre - Segunda parte

En la primera parte de esta entrada se discutió, entre otras cosas, variación genética en perros y el trabajo del grupo de investigación de a doctora Ostander. Pues bien, los últimos descubrimientos de Ostander se presentan en una publicación de la revista Cell Reports. En ésta, se aborda la historia poblacional de las casi 400 razas reportadas alrededor del mundo, encontrando que todas ellas pueden ser divididas en sólo 23 grupos (clados).

Selección artificial y el mejor amigo del hombre - Primera parte

Selección artificial y el mejor amigo del hombre - Primera parte

¿Sabías que todos los perros comparten una historia familiar de miles de años? ¿Sabías que descienden de lobos que acechaban a las primeras comunidades humanas?

Los perros (Canis familiaris) son los orgullosos portadores de miles de años de historia como especie. A pesar de que la comunidad científica del ramo no tiene un consenso sobre el lugar y fecha exacta del surgimiento del mejor amigo del hombre, el último estudio a nivel paleogenómico sugiere que el perroaparece por primera vez en algún lugar de Europa durante el periodo neolítico hace aproximadamente 20,000 y 40,000 años a partir de una comunidad de lobos ancestrales.

Acariciando el agua

Acariciando el agua

Como animales terrestres, los humanos tenemos enorme curiosidad, quizá incluso envidia, por aquellos organismos que pueden ir a donde nosotros  no podemos naturalmente. De ahí los deseos de volar, o respirar bajo el agua, o como el tema de este texto: caminar sobre el agua.  Aunque en nuestro imaginario colectivo sea milagroso pasearse sobre la superficie de un lago, existen una diversidad de animales que son expertos en ello, y entre ellos no podían faltar insectos.

Esfuerzos globales por la conservación de la biodiversidad

Esfuerzos globales por la conservación de la biodiversidad

¿Qué es la COP13?, ¿qué es la Convención de la Biodiversidad de la ONU?, ¿qué es la Década de la Biodiversidad? Si tu disciplina se relaciona de alguna manera con la biología, los ecosistemas, y la conservación de especies, seguramente estás interesado o conoces muchos de estos términos. Este artículo te será de interés especialmente si las políticas públicas en biodiversidad llaman tu atención, ya que resolveremos estas preguntas, y entenderemos el estatus actual de los esfuerzos globales de los diferentes sectores interesados en la conservación de los ecosistemas y la biodiversidad.

Un asunto engorroso

Un asunto engorroso

No es raro que en la mañana cuando sales por la puerta de tu casa, te subes al coche, o caminas entre árboles, sientas de pronto la clásica hebra de telaraña que se pega en tu cara, tu ropa o tus manos. Después de retirarla, quizá sientas pena por haber destruido el trabajo nocturno de la dedicada tejedora. Tal vez por un instante pienses en cómo algo tan delicado puede detener a una presa. No estás solo, la biología y física de las telarañas es un tema de investigación que despierta muchas preguntas e interés.

Las células de nuestro cuerpo saben qué hora es

Las células de nuestro cuerpo saben qué hora es

¿Sabías que las células de nuestro cuerpo saben cuándo es de día y cuándo es de noche? Este fenómeno se llama “ritmo circadiano” y es de gran importancia para regular desde procesos a nivel celular hasta el comportamiento de los seres vivos.

De cuentos y patas, un blog para bicharrajos

De cuentos y patas, un blog para bicharrajos

De cuentos y patas, un blog para bicharrajos

Bichos, alimañas, sabandijas. Bien reza el dicho, "más sabe el diablo por viejo que por diablo". A la luz de la historia biológica de la tierra, pocos grupos de animales podrán presumir de ser tan sabios como aquel de los artrópodos. Son por mucho el grupo de animales más numeroso en especies, y de los más antiguos

Bacterias y hongos produciendo mi detergente

No todas las bacterias y hongos causan enfermedades o plagas como a veces se suele creer; con ayuda de la biotecnología y de la ingeniería genética podemos hacer uso de algunas moléculas que ellos utilizan como las enzimas. Pero, ¿qué son las enzimas? Son herramientas que todos los seres vivos producen y que ayudan a que los procesos que tienen lugar dentro de las células se lleven a cabo más rápido, ya sea degradando o sintetizando compuestos que posteriormente serán utilizados. Gracias a la biotecnología, se ha logrado manipular muchas enzimas con el fin de obtener o mejorar productos, como por ejemplo los detergentes. Imaginemos ahora el mecanismo de limpieza de un detergente común. Un detergente es una mezcla de compuestos que facilita la remoción de suciedad en las telas; dado que el agua por sí sola no es capaz de penetrar en las telas con suciedad, al combinarse con el detergente se facilita la absorción en la ropa. Esto es gracias a que los detergentes disminuyen la tensión superficial del agua. Una vez absorbido, el detergente comienza su mecanismo de limpieza gracias a unas estructuras llamadas “micelas”, las cuales son pequeñas cápsulas que atrapan la suciedad liberándola a la superficie.

Las enzimas en los detergentes se utilizan para romper enlaces de biomoléculas como lípidos, carbohidratos y proteínas, causantes de manchas casi imposibles de eliminar. La eficiencia de las enzimas llega a tal alcance que gracias a estos nuevos productos biotecnológicos el eliminar manchas de sangre, aceite y otras que antes condenaban a las prendas a la basura, ahora se ha vuelto una tarea más sencilla y esto gracias a aquellos microorganismos que tanto nos desagradan.

Existe una gran cantidad de bacterias y hongos cuyas enzimas inspiran nuevos productos biotecnológicos, un ejemplo de algunos son las bacterias Bacillus lichenformis y Bacillus amyloliquefaciens, y los hongos Humicola insolens, Aspergillus oryzae y Aspergillus flavus. Todos estos son utilizados en la industria biotecnológica en los detergentes con enzimas.

La Bacillus lichenformis es una bacteria encontrada en forma de espora en el suelo. De ella se obtienen las “amilasas”, específicamente la α-amilasa, que es una enzima que ayuda a degradar residuos de almidones o carbohidratos, como el chocolate o las harinas.

La Bacillus amyloliquefaciens, por otro lado, es una bacteria productora de las enzimas llamadas “proteasas”, las cuales se encargan de romper, con ayuda del agua, los enlaces que unen a las proteínas, removiendo manchas de huevo y sangre, ambos constituidos principalmente por este tipo de macromoléculas. Estas proteasas son también producidas por el hongo Aspergillus flavus (figura 1), causante de enfermedades en humanos; puede ocasionar desde una rinitis alérgica hasta asma crónica severa. Este tipo de hongo forma filamentos o ramificaciones durante su crecimiento, secretando la enzima capaz de descomponer alimentos complejos. Este tipo de enzimas se encargan de romper las proteínas en las moléculas que la constituyen, o sea los aminoácidos, pues así el hongo puede alimentarse fácilmente.

PHIL_4299_lores

Figura 1. Aspergillus flavus, hongo que causa enfermedades en humanos, pero cuyas enzimas también han sido útiles para la producción de detergentes. Imagen cortesía del Dr. Libero Ajello , ID #4299.

 

Otras enzimas integradas en los detergentes son las “lipasas”, que ayudan a disolver las manchas de grasas y aceites en la ropa, y son producidas por un hongo filamentoso llamado Humicola. Mediante la biotecnología se logró aislar el gen de la lipasa de este hongo y se transfirió al hongo Aspergillus oryzae, utilizado también en la producción de salsa de soja mediante la fermentación.

Todas estas enzimas son muy eficientes en nuestra ropa hecha de algodón, compuesto en un 91.5% de celulosa, un tipo de carbohidrato complejo que forma las fibras que se entrelazan para crear una tela. Al desgastarse la tela, se exponen cada vez más fibras de algodón al exterior promoviendo la pérdida de color y la apariencia desgastada en la ropa. Actualmente los detergentes que conservan el color en las telas contienen “celulasas” que son extraídas de un hongo llamado Humicola insolens. Estas enzimas están encargadas de degradar la celulosa contenida en las fibras de algodón desgastado, así se pierden los excedentes causantes del color opaco y se restaura el color original de la prenda.

Gracias a la biotecnología podemos manipular bacterias y hongos que en otras circunstancias resultan perjudiciales para nuestra salud y utilizarlas para nuestro beneficio en asuntos de la vida diaria. Estas innovaciones se apoyan en dichos microorganismos para que los procesos industriales se vuelvan amigables con el ambiente, permitiéndonos crear productos biodegradables de uso cotidiano tales como los detergentes.

 

Referencias

Jesús Córdoba López, S. R. (s.f.). Producción de Lipasas de hongos termófilos cultivados en medios líquidos y sólidos. Guadalajara, Jalisco, México.

Jorge Gonzáles-Bacerio, V. R.-M.-M. (2010). Las lipasas: enzimas con potencial para el desarrollo de biocatalizadores inmovilizados por adsorción interfacial. Revista Colombiana de Biotecnología , 12 (1).

Jyoti Vakhlu, A. K. (10 de Agosto de 2005). Yeast Lipases: enzyme purification, biochemical properties and gene cloning. 9(1). Electronic Journal of biotechnology.

Murray, P. (2009). Center for Integrated Fungal Reaserch. Obtenido de AspergillusFlavus.org: http://aspergillusflavus.org/aflavus/

Las enzimas en los jabones para la ropa. Recuperado el 24 de noviembre del 2014 desde http://www.argenbio.org/index.php?action=novedades&note=240

Proteasa. Recuperado el 24 de noviembre del 2014 desde http://www.ecured.cu/index.php/Proteasa

Martínez G., J.F. (2005). Utilización de la α-amilasas en la formulación de detergentes industriales. Tesis doctoral, Departamento de ciencias químicas, Universidad de Granada.

 

Agradecimientos

A la Dra. Yalbi I Balderas-Martínez de la Facultad de Ciencias, UNAM, México, D.F. por la revisión del escrito.

 

Autores

Estudiantes de la Ing. en Biotecnología de la Universidad Politécnica del Estado de Morelos UPEMOR. Por orden alfabético:

Alejandra Naomi Adán Valencia, Sergio A. Chavarría Santibañez, Emmanuel Gómez Corona, Gabriela Hernández Contreras, Oliver Gerardo Moreno Aguilera, Karen Azucena Ruiz Guerrero, Jonathan Sandoval Espinoza.

Una breve historia del petróleo y la sociedad que decidió explotarlo

Durante los primeros meses de 1991, fuerzas iraquíes encendieron fuego a cientos de pozos petroleros en Kuwait en respuesta a la intervención de las fuerzas de la Coalición de la Guerra del Golfo. Los incendios petroleros de Kuwait fueron totalmente controlados en noviembre del mismo año. La invasión de Irak a Kuwait fue motivada por conflictos petroleros. http://bit.ly/VQfsAx  

Hace algunos meses un grupo de hackers de la comunidad musulmana, bajo el nombre de AnonGhost, lanzó el primero de lo que prometió sería una serie de ataques contra corporaciones occidentales y ciertos gobiernos de países árabes; la campaña #OpPetrol es un ataque dirigido a la industria petrolera que, en palabras de los activistas, “ha deshumanizado la economía y ha creado un nuevo orden mundial basado en el Petro Dólar”. Del otro lado del mundo, un grupo de ecologistas es arrestado por protestar contra la construcción de las primeras minas para explotar arenas de petróleo en Estados Unidos que, siguiendo el ejemplo de Canadá, busca extraer hidrocarburos por vías poco ortodoxas, como respuesta al agotamiento de otro tipo de yacimientos.

En México se invierten cantidades exorbitantes en la exploración y explotación de yacimientos petroleros en aguas profundas aún cuando la sombra del desastre provocado por el hundimiento de la plataforma Deepwater Horizon en 2010 no se ha disipado del todo.

No cabe duda que el mundo se mueve con combustibles fósiles y es un hecho que la reserva mundial de estos hidrocarburos está menguando; día con día somos testigos de las implicaciones políticas, económicas y sociales que se desprenden de este hecho. Pero, ¿qué sabemos realmente del petróleo?, ¿de dónde viene?, ¿cuándo comenzamos a explotarlo?, ¿por qué parece haber tan poco? y ¿cómo pasó de ser una solución energética a ser un problema mundial? Para darle respuesta a estas preguntas tenemos que comenzar el relato hace algunos millones de años, cuando la Tierra era muy diferente a lo que conocemos ahora.

 

Un puré de microorganismos a presión

Contrario a la creencia popular, hay muy poco de dinosaurios en nuestro petróleo; la mayor parte de él tuvo su origen en las aguas tibias y someras de mares antiguos, donde las condiciones ambientales favorecieron una explosión de vida microscópica (algas verde azules, foraminíferos y diatomeas), pero un océano floreciente de vida es también un océano lleno de muerte; cuando estos microorganismos partían al cielo de las diatomeas, sus restos se depositaron por millones sobre el lecho marino; en ocasiones la velocidad de este proceso era tal, que el piso oceánico acumulaba restos con mayor velocidad que la necesaria para iniciar el proceso de descomposición. A esta receta sólo tenemos que agregarle unos cuantos millones de años de temperatura y presión elevadas y listo: nuestro coctel de microorganismos se ha transformado en petróleo.

 

Las diatomeas son algas unicelulares que forman una proporción importante del fitoplancton. Poco queda de sus espectaculares diseños después de que el tiempo, la presión y las elevadas temperaturas las transforman en hidrocarburos. Ilustración de Ernst Haeckel.

 

 

Las condiciones adecuadas para la formación de petróleo no son exclusivas de una era geológica; distintas circunstancias pudieron haber generado situaciones similares a las expuestas anteriormente para formar los yacimientos que tanto nos esforzamos en localizar hoy en día. Un elemento constante para que sea exitosa la transformación del plancton en un potencial combustible de avión, es el paso del tiempo. Las condiciones de temperatura y presión necesarias para que esto suceda se logran mediante la acumulación lenta y sostenida de sedimentos que aumentan gradualmente la presión de las capas más bajas y provocan que éstas eleven su temperatura al estar más cerca del manto terrestre. Esto sólo sucede con el paso de millones y millones de años. En este proceso, además de petróleo, también se genera gas natural.

El carbón, el tercer elemento en nuestro imperio de combustibles fósiles, se generó mediante un proceso similar, pero éste utilizó materia vegetal “macro” -troncos y ramas- como materia prima. Estudios recientes han sugerido que la abundancia de depósitos de carbón con más de trescientos millones de años de antigüedad puede estar relacionada con la ausencia de hongos capaces de descomponer la lignina de los troncos. ¿De qué sirve comer madera si no se ha “inventado” la madera aún?

Existe un teoría alternativa respecto a la formación de petróleo y otros combustibles fósiles por la descomposición de materia viva: la teoría abiótica. Los defensores de esta teoría argumentan que el origen del petróleo, el carbón y el gas natural podrían estar ligados a procesos que ocurren naturalmente en las capas más profundas de la corteza terrestre, cerca del manto, sin necesidad de la intervención de materia viva. Existe una gran controversia con respecto a esta teoría, pero no puede eliminarse debido al simple hecho de que nadie ha presenciado la formación de petróleo de forma natural. Si la teoría abiótica tuviera fundamentos, esto implicaría que existe más –mucho más- petróleo, gas y carbón en la Tierra del que tenemos previsto; sin embargo, esto también implica que dichos recursos podrían estar a profundidades y condiciones tales que su explotación es prácticamente inviable bajo los esquemas de extracción actuales. Independientemente de quién tenga la razón, en términos de aprovechamiento de recursos, quedamos en las mismas.

 

El surgimiento de una economía petrolera

El petróleo se ha utilizado de forma más o menos constante por varias civilizaciones humanas. Existen registros de su uso por griegos, chinos y persas, quienes utilizaban el recurso para labores de construcción y, por su carácter inflamable, como materia prima para lámparas y otras pirotecnias. Su historia moderna empieza a mediados del siglo XIX, cuando pasó de ser un remedio casero para curar dolores reumáticos a ser el principal combustible utilizado en la iluminación.

El queroseno –un aceite producido a partir de una destilación simple del petróleo- sustituyó rápidamente al aceite de ballena como principal fuente de iluminación, debido a su bajo costo y aparente abundancia; esta industria fundamenta el éxito temprano de la explotación petrolera. Pronto se comenzaron a construir refinerías a gran escala para solucionar la demanda del combustible y procesar el nuevo recurso que “brotaba de la tierra”. John D. Rockefeller aprovechó la fiebre del oro negro y fundó Standard Oil, la compañía que capitalizó el aprovechamiento del hidrocarburo hasta principios del siglo XX.

En 1879 Thomas Alva Edison presenta al mundo el primer foco de luz incandescente, capaz de comercializarse a gran escala y el imperio del queroseno llega a su fin. Sin embargo, los procesos de refinación petrolera habían generado un sinnúmero de productos aprovechables y el petróleo no tardó en encontrar un nuevo mejor amigo: el motor de combustión interna.

A partir de aquí, la historia es fácil de recapitular: Henry Ford hace que el motor de combustión interna se vuelva uno de los bienes más comunes en los hogares estadounidenses y en el mundo, la demanda mundial de petróleo aumenta exponencialmente durante el siglo XX y se empiezan a aprovechar nuevos subproductos de la refinación del petróleo crudo, principalmente en la forma de polímeros plásticos.

Los primeros síntomas de agotamiento se hacen evidentes y para los años sesenta, Estados Unidos no puede sostener una producción capaz de satisfacer la demanda y se convierte en un fuerte importador del hidrocarburo. El mismo destino aqueja a muchos países industrializados y los conflictos bélicos por el recurso limitante empiezan a hacerse evidentes.

 

 El petróleo hoy

El panorama actual no es muy alentador. Existen fuentes muy optimistas y otras muy pesimistas sobre la cantidad de combustibles fósiles que quedan a nuestra disposición, pero la realidad es que el acceso a estos recursos, independientemente de la cantidad que quede, es cada vez más difícil y costoso. Prácticas altamente cuestionadas por sus repercusiones ambientales como el fracking y la explotación de arenas bituminosas ocupan las primeras planas en muchos países. A estos problemas, es necesario sumar que el aprovechamiento de combustibles fósiles es, en buena parte, responsable de los problemas de contaminación prevalecientes en las ciudades modernas y la mayor fuente de los gases invernadero de origen antropogénico que juegan un papel importante en el cambio climático. La época en la que el petróleo brotaba de la tierra sin mayores consecuencias ha quedado atrás.

Mientras muchos países siguen discutiendo medidas sobre cómo mantener las políticas energéticas vigentes, otros como Dinamarca han puesto manos a la obra en la búsqueda de alternativas. Dinamarca planea sustentar 70% del consumo energético nacional con recursos renovables (mediante el aprovechamiento de energía eólica) para 2020 y ser totalmente sustentable para mediados de siglo.

La granja de viento de Middelgrunden en Dinamarca es una parte de los esfuerzos de este país por volverse energéticamente sustentable en el corto plazo. Imagen por Kim Hansen. Procesada digitalmente por Richard Bartz y Kim Hansen. (http://creativecommons.org/licenses/by-sa/3.0).

 

Basar la economía global, de un país o de un pueblo en recursos no renovables no es una buena inversión a largo plazo. Quiero cerrar este artículo contándoles la historia de Pithole City, Pennsylvania; esta ciudad se estableció en 1965, en medio de la fiebre petrolera estadounidense. A unos meses de haberse realizado el trazo urbano, ya contaba con la oficina de correos más grande del estado, más de cincuenta hoteles, un periódico propio y una población superior a los quince mil habitantes. La producción petrolera que enriqueció a muchos de los habitantes de la ciudad cayó más de 70% en menos de un año y para 1977 la ciudad estaba completamente abandonada. Hoy, Pithole City prevalece como un museo donde se puede admirar la historia de los primeros días de la industria petrolera americana.

 

Si quieren conocer más detalles sobre la industrial petrolera, la historia del petróleo y los procesos químicos detrás de su refinación y aprovechamiento, aquí les dejó un link al libro Petroquímica y Sociedad de Susana Chow Pangtay. Si quieren algo más de información sobre el mercado y la situación global de la industria petrolera les recomiendo el libro Oil 101 de Morgan Downey. Y si quieren una buena lectura en el contexto del nacimiento de la industria petrolera americana, échenle un ojo a Oil! De Upton Sinclair o a su adaptación cinematográfica por Paul Thomas Anderson There Will Be Blood. ¡Ambos son muy recomendables!

Imitando a la Naturaleza: Diseño Molecular de un Virus

Cuando se inicia una nueva investigación uno nunca sabe que tan lejos podrá llegar, aunque uno supone que no tan lejos porque suele pasar que en ciencia uno va caminando muy lentamente. Pocos son los que han encontrado en su investigación la rendija que los llevará al otro lado, ese lado tan anhelado pero poco visitado. Eso es lo que pensaba hasta hace unos meses cuando los resultados de mi investigación empezaron a mostrar que el tiro por el que apostamos dio al blanco y así lo confirmaban experimentos sucesivos. La Composición Determina La Función

Empezaré explicando lo básico. Como todos saben toda la materia está hecha de átomos y moléculas y dependiendo de cómo estén arreglados en el espacio y tiempo es como serán sus propiedades. Esto también aplica para la materia biológica, la que está compuesta de biomoléculas, ya sabes, proteínas, ácidos nucleicos (ADN o ARN), lípidos y carbohidratos. La materia biológica también está ordenada en el espacio y tiempo aunque, no está de más decirlo, particularmente de manera muy precisa y compleja. Me detendré a explicar con más detalle este dato que es sumamente importante. Debido a su carácter polimérico1, las biomoléculas forman estructuras regulares; esto significa que despliegan ciertos grupos químicos con orientación espacial fija, lo cual condiciona las interacciones que establecen con otras biomoléculas tanto en el tiempo y espacio y, por lo tanto, las propiedades de esa biomolécula en particular están determinadas. Por interacciones me refiero a fuerzas de atracción o repulsión hacia otros grupos químicos desplegados por otras (bio)moléculas, incluyendo las moléculas de agua. Todo esto depende en última estancia de la composición particular de la biomolécula. Es decir la composición de las biomoléculas codifica para su funcionalidad. Así es que conociendo la composición de una biomolécula en particular y sabiendo como se despliega en el espacio es posible predecir y modificar sus propiedades, o bien crear una biomolécula desde cero o de novo con ciertas propiedades. Esto es uno de los paradigmas más importantes de la química actual, es el engranaje que mueve la maquinaria de la (bio)nanotecnología. Se puede intuir la gran capacidad que tiene para revolucionar el estado actual de la tecnología.

Esta impresionante capacidad actual de la química es resultado de las pasadas décadas de estudio intensivo y acelerado de las propiedades básicas de la (bio)materia y de entender sus interacciones, desarrollar modelos para cuantificarlas y poder predecir sus efectos. A la par, han llegado otros desarrollos tecnológicos que permiten un rápido estudio de la ingeniería biomolecular, microscopios de fuerza atómica (que permiten ver y manipular átomos y moléculas individuales), de fluorescencia (entender interacciones y dinámicas), estandarización de métodos de biología molecular (para poder producir cualquier proteína exista o no en la naturaleza).

Diseñando (Bio)Moléculas Con Propiedades Específicas

Con esta capacidad para predecir las propiedades de nuevas (bio)moléculas los científicos hemos empezado a preguntarnos: ¿podemos diseñar (bio)moléculas que puedan imitar estructuras de la naturaleza tales como las encontradas en la fotosíntesis (para obtención de energía), o las capsulas virales (para tener sistemas de entrega de medicamentos mucho más eficientes) y usarlas para nuestro beneficio? La respuesta es sí.

Diseñando Partículas Virales Artificiales

Cuando inicié mi proyecto de doctorado mis supervisores me decían que no teníamos necesariamente que lograr lo que estaba planteado por escrito en la propuesta de anteproyecto, que usualmente, aunque se tiene como objetivo, no se alcanza. Bien, si la naturaleza ya lo ha logrado, ¿por qué no usarla como fuente de inspiración?

Si tomamos un virus muy sencillo, como el virus del mosaico del tabaco (VMT) y analizamos sus componentes, podemos distinguir que está compuesto por una sola molécula de ARN recubierta por alrededor de 2000 copias de una proteína, formando una estructura alargada de aproximadamente 300 nanómetros (parecen rodillos rígidos) donde el ARN se encuentra en el interior (ver figura 1). Parece ser que la cápsula (el recubrimiento) es bastante sencilla, solo un tipo de proteína que se ordena alrededor del ARN. ¿Como está diseñada esta proteína que al mezclarla con el ARN forma espontáneamente estructuras regulares capaces de infectar células de las hojas del tabaco? Como se pueden dar cuenta, el diseño mínimo de una partícula viral recae en el diseño de la cubierta proteínica, ya que básicamente ella realiza todas las funciones esenciales.

VirusMT

Figura 1. Virus del Mosaico del Tabaco (VMT). 1) ARN 2) Sub-unidad proteínica de la cubierta 3) Partículas virales ensambladas (Crédito de la imagen: Splette)

Si analizamos la proteína de la cubierta del virus podemos distinguir partes de ella que realizan funciones fundamentales (ver figura 2), 1) unión al ácido nucleico (ARN), 2) Auto-ensamblaje alrededor del ARN (establece interacciones entre proteínas adyacentes de manera coordinada y ordenada) 3) Estabilidad coloidal (evita que partículas virales ya formadas empiecen a agregarse entre sí o se insolubilicen, ya que partículas grandes tienden a precipitarse en solución).

Tobacco_Mosaic_Virus_structure

Figura 2. Sub-unidad proteica de la cubierta del virus del mosaico del tabaco

 Codificando La Funcionalidad En La Composición Química

¿Cómo codificar estas funciones a nivel molecular en proteínas artificiales? Imitando la química de los virus. Si se toma una secuencia de aminoácidos (de lo que están hechas las proteínas) con alta densidad de carga positiva entonces se podrán unir a los ácidos nucleicos que son negativos. Si se une a esta otra secuencia con propiedades de auto-ensamblado entonces podrás dirigir la condensación del ácido nucleico en estructuras alongadas de forma cooperativa. La propiedad de auto-ensamblado es fundamental para hacer emerger la cooperatividad, propiedad que es ubicua en todos los sistemas biológicos y que asegurará que las partículas entre el ARN y la proteína estén ensambladas completamente y por lo tanto la información genética del ácido nucleico esté protegida. La última función requerida es la estabilidad coloidal que se puede lograr si se añade una secuencia de aminoácidos que den solubilidad al agregado. Estas propiedades permitirán que las partículas penetren las células y entreguen el cargamento de ADN. No está de más decir que una partícula viral artificial formada de esta forma es totalmente segura ya que no es capaz de replicarse e infectar nuevas células ya que esas funciones no están codificadas en la cubierta diseñada.

Después de una larga labor produciendo estas proteínas, en una de esas noches largas que pasarán a la posteridad, sentado enfrente del microscopio vislumbre una imagen increíble, una serie de estructuras alargadas esparcidas por la superficie. Eran mis partículas virales con las que habíamos soñado años antes. Unos minutos antes había mezclado un poco de ADN con cierta cantidad de mi proteína diseñada. Las proteínas que diseñamos habían empezado su danza microscópica, cual historia de amor, habían sido atraídas por ese aroma negativo del ADN, y empezado a recubrirlo. Una parte de ellas , responsable del auto-ensamblado, les ordenó a todas esas proteínas reunidas alrededor del ADN actuar, condensar el ADN en una pequeña partícula de 300 nm, rígida, alargada como una fibra. Acercamiento. Esto es un virus, una partícula viral artificial, una molécula de ADN condensada por una cubierta proteínica diseñada por nosotros. La danza molecular ha terminado, ahora yo danzo, brinco y grito de emoción. ¿Hasta dónde llegará esto? Semanas después colaboradores del Centro Médico de Nimega nos confirman, esas partículas han logrado entrar a células y entregar el ADN que expresa una proteína fluorescente. Después llegaron los teóricos de la Universidad de Eindhoven y nos cuentan que el proceso físico de ensamblaje es similar al del virus del mosaico del tabaco, nuestra fuente de inspiración.

Este estudio ha demostrado que es posible codificar en diferentes secuencias las mismas funcionalidades que se requieren para crear algún material que imite a componentes biológicos. De una forma es imitar la nanotecnología de la naturaleza. El diseño de moléculas funcionales que se auto-ensamblen en nuevos materiales con propiedades controladas a la escala nanométrica ya es una realidad. El siguiente paso es ahora empezar a crear otros materiales que imiten a la naturaleza de una manera mas compleja, ensambladores de nanomateriales, sensores ultra potentes, captadores de energía solar, cápsulas que respondan a estímulos del cuerpo para que combatan una enfermedad, etc. Las perspectivas son amplias para las partículas virales diseñadas de novo. Se pueden añadir secuencias con función de reconocimiento de células enfermas (por ejemplo, cáncer) para que sean usadas para terapia génica o para entregar otros ARN de interferencia afectando mínimamente al tejido sano. También pueden ser usados para crear vacunas de diseño.

En Hombros De Gigantes

En este punto me pongo a reflexionar sobre todos esos hombres y mujeres que desde hace décadas han contribuido a entender los componentes celulares, no solo para aplicar su conocimiento sino para entender lo que somos, y que con sus contribuciones han cimentado nuestro trabajo actual: podemos diseñar moléculas con un refinamiento tal que imiten a las máquinas moleculares de la naturaleza.2

Si tienes cualquier comentario, sugerencia o pregunta no dudes en dejarla. Gracias por tu atención.

Notas

1. Un polímero es una molécula muy grande formada por múltiples repeticiones de una unidad básica.

2. Si bien la célula no es en esencia una máquina, visualizarla como tal en ciertas ocasiones trae resultados muy prácticos y espectaculares

Escrito por Armando Hernández y publicado originalmente en su blog acerca de bionanotecnología

[hozbreak]

Acerca del autor

Armando Hernández García es Químico de Alimentos egresado de la UNAM. Obtuvo el doctorado en la Universidad de Wageningen, Holanda y actualmente realiza un postdoctorado en la Universidad de Northwestern en Chicago. Su investigación se ha enfocado a entender y controlar los principios que subyacen la formación de nanoestructuras funcionales con proteínas y su posible aplicación biomédica. Contacto: armaquim@gmail.com y blog: http://bionanotecnologias.blogspot.com.

La Bionanotecnología y sus conceptos

El vertiginoso desarrollo de la ciencia ha logrado avances impresionantes que necesitan ser divulgados entre la sociedad. Entre las nuevas fascinaciones de las mujeres y hombres de ciencia se encuentra la Bionanotecnología o también llamada Ingeniería Biomolecular, que destaca tanto por sus aportaciones a la ciencia e incidencia en el desarrollo tecnológico como por su carácter altamente interdisciplinario y polifacético donde convergen diferentes enfoques provenientes de la biología, química, física e ingeniería.

¿Qué es la bionanotecnología?

La bionanotecnología se origina de la fusión entre la nanotecnología y la biotecnología. Por un lado, la nanotecnología es la construcción y modelaje de la materia manipulando átomo por átomo aplicada en la ingeniería y manufactura a escala nanométrica. Por el otro, la biotecnología aprovecha diversas funcionalidades derivadas de procesos biológicos para aplicaciones específicas sin que importen los detalles moleculares y atómicos de las biomoléculas que llevan a cabo dichos procesos. Con base en ello, la bionanotecnología se define como la ingeniería y manufactura aplicada al diseño y modificación de los detalles atómicos de maquinarias y dispositivos moleculares basados en biomoléculas (ácido desoxirribonucleico -ADN-, proteínas, lípidos y carbohidratos) para que lleven a cabo funciones especificas a nivel nanométrico construidos mediante ensambladores biomoleculares. El rápido avance científico hace que el ámbito de influencia de la bionanotecnología aun se esté definiendo.

Para tener idea de las dimensiones de dichas máquinas es necesario decir que un nanómetro es la milmillonésima parte de un metro, o bien en nuestro mundo macroscópico equivaldría a comparar una moneda con el ¡diámetro de la tierra! La capacidad de visualización y manipulación de diminutos átomos y moléculas se logra con instrumentos y técnicas sofisticadas y refinadas de microscopía, cristalografía, espectroscopia y modelaje en computadora.

Las biomoléculas son las protagonistas

Las biomoléculas son los componentes de la célula desarrollados y optimizados a través de millones de años de evolución natural que mantienen la vida celular llevando a cabo todas las funciones necesarias para su crecimiento, sobrevivencia y reproducción.

A pesar de que la célula es un sistema altamente complejo, base de la vida, se puede hacer una analogía (muy pobre, pero muy efectiva) con una máquina o un sistema compuesto de varias máquinas. Por ejemplo, el flagelo bacteriano y el complejo ATP sintasa funcionan esencialmente como motores generando movimiento mecánico alrededor de un eje y bombeando protones, mientras que la miosina realiza la contracción muscular; los anticuerpos y receptores de membrana detectan diversas moléculas por lo que son sensores; la actina y los microtúbulos son vigas y soportes, las enzimas son herramientas reparadoras y constructoras, los ribosomas son los ensambladores que construyen nuevas máquinas proteínicas en líneas de producción, el ADN es el control numérico, los lípidos forman vesículas contenedoras y la membrana lipídica que rodea la célula tal como si fuera una carcasa, etcétera. Todas estas entidades biológicas son delicadas moléculas de tamaño nanométrico con propiedades basadas principalmente en la química y debido a que en esencia realizan funciones de máquinas con precisión atómica también pueden ser caracterizadas y optimizadas con enfoques de la física y la ingeniería.

La célula crea las biomoléculas

Debido a que las biomoléculas son productos exclusivos del metabolismo celular, el desarrollo de la biología molecular en las últimas décadas ha sido de gran ayuda para la bionanotecnología permitiendo conocer los detalles de los mecanismos de muchas de estas “nanomáquinas”.

De inmensa importancia ha sido el desarrollo de la tecnología del ADN recombinante en la expansión de la bionanotecnología ya que ha permitido modificar y producir en gran escala de forma barata y rápida las “bionanomáquinas” y biomateriales necesarios para la bionanotecnología. Como el ADN posee toda la información necesaria para generar una proteína funcional (la gran mayoría de las “bionanomáquinas” están compuestas de proteína), es decir, contiene secuencias de ácidos nucleicos que codifican para los aminoácidos de una proteína, solo basta alterar y editar las secuencias del ADN para modificar una proteína particular con precisión atómica y así optimizar su funcionamiento y propiedades o generar nuevas y novedosas máquinas de proteína, las cuales son producidas en gran cantidad a partir de substratos baratos al crecer la célula con el gen en particular. La capacidad de manipular la célula es sin duda un cambio de paradigma que ha revolucionado tanto la ciencia como la forma en que vemos al mundo.

La Bionanotecnología trabaja interdisciplinariamente

Además de optimizar y modificar las biomoléculas a escala nanométrica para aplicaciones específicas, la bionanotecnología se ha adentrado en nuevos caminos y consolidado como un área altamente interdisciplinaria. Fusionándose con la ciencia de materiales ha desarrollado novedosos materiales híbridos entre compuestos inorgánicos y bioorgánicos, superando así la tradicional separación entre estos dos tipos de materia y borrando las fronteras entre la materia viva e inanimada.

Esta área usa proteínas y ácidos nucleicos como unidades programables de reconocimiento molecular, las cuales son acopladas (ligadas químicamente) a nanopartículas inorgánicas con propiedades ópticas, electrónicas y catalíticas diversas e interesantes, útiles para elaborar materiales y dispositivos inteligentes basados en compuestos híbridos que se auto-ensamblan en complejos supramoleculares nanométricos usados en aplicaciones bioanalíticas y biomédicas para diagnóstico, visualización y tratamiento de enfermedades y también para computación, electrónica, óptica y manufactura molecular.

Borrando Fronteras entre la Materia

El punto cardinal en la Bionanotecnología es la materia y la disolución de la frontera bioorgánica/inorgánica. Objetos vivos e inanimados están hechos por átomos. Las propiedades de la materia cambian de acuerdo con el patrón en que estén ordenados y enlazados los diferentes átomos que la componen: carbón y diamante, arena y chips de computadora, cáncer y tejido sano, tienen cierta disposición que hace la diferencia entre lo enfermo de lo sano y lo barato de lo valioso, tal como dice el apóstol de la nanotecnología, Erik Drexler en su famoso libro Máquinas de creación.

Hemos entrado en la era conjunta de la manipulación atómica y genética. Hay muchos riesgos pero también mucho potencial, que bien balanceado y en un ambiente democrático puede ser aprovechado para atender problemáticas específicas dentro del contexto mexicano.

Así, los bionanotecnólogos han creado nuevos horizontes en la ciencia, han descubierto excitantes áreas de desarrollo tecnológico y científico, novedosas e inéditas aplicaciones de las biomoléculas y han generado hitos de interdisciplinariedad al asociar disciplinas comúnmente separadas. La pregunta es, parafraseando al Nobel Richard Feynman en su discurso inaugural de la nanotecnología, ¿habrá suficiente espacio en el fondo de nuestra mente para apoyar la bionanotecnología en México?

Escrito por Armando Hernández y publicado originalmente en su blog acerca de bionanotecnología

[hozbreak]

Acerca del autor

Armando Hernández García es Químico de Alimentos egresado de la UNAM. Obtuvo el doctorado en la Universidad de Wageningen, Holanda y actualmente realiza un postdoctorado en la Universidad de Northwestern en Chicago. Su investigación se ha enfocado a entender y controlar los principios que subyacen la formación de nanoestructuras funcionales con proteínas y su posible aplicación biomédica. Contacto: armaquim@gmail.com y blog: http://bionanotecnologias.blogspot.com.

Epistemología: filosofía de/en/desde/con/para la ciencia

En su célebre conferencia de 1957 (convertida después en el último capítulo del libro La ciencia, su método y su filosofía) titulada "Filosofar científicamente y encarar la ciencia filosóficamente", el epistemólogo Mario Bunge le cuenta a sus alumnos (tanto de aquel tiempo como los que ahora lo leemos) la necesidad urgente de generar epistemólogos de primer nivel en Latinoamérica, con el fin de incrementar la difusión y el estudio de los fundamentos de la ciencia, y con ello ofrecer a la sociedad una serie de expertos que estén capacitados para analizar, debatir y proponer soluciones a los problemas filosóficos que se derivan de la actividad científica. Bunge nos habla de revitalizar la carrera de filosofía, la cual parece que prepara más especialistas en filosofía antigua y medieval, que filósofos propiamente dichos. También denuncia la falta de cultura científica de los especialistas en filosofía y la ignorancia filosófica de los científicos profesionales. Si esta situación sigue así, comentaba Bunge en el 57 aunque el problema aún continúa hasta hoy, estamos condenados a seguir viendo esa separación abismal entre ciencia y filosofía, con especialistas de ambas áreas despreciándose unos a otros.

Una de las áreas que une la rigurosidad y el respeto por los hechos que muestra toda ciencia, y el análisis lógico de conceptos y la formalización de la filosofía exacta, es la epistemología. Pero, ¿qué es la epistemología? El concepto puede causar cierta confusión ya que más de un libro lo utiliza como sinónimo de gnoseología o teoría del conocimiento. Pero esta confusión es innecesaria y puede evitarse si se define de forma clara el área de la epistemología.

Puede decirse entonces, por un lado, que la gnoseología es la rama de la filosofía que se ocupa del estudio de los principios del conocimiento. El conjunto de cuestiones, debates y respuestas sobre ¿qué es el conocimiento?, ¿qué podemos llegar a conocer?, ¿cómo conocemos? entre otras cuestiones, forman parte de la gnoseología. Esta área se ha visto enriquecida sobre todo gracias a las ciencias cognitivas que nos ofrecen respuestas a muchas de estas preguntas, generando nuevas cuestiones. Desde luego, el que la ciencia cognitiva nos ayude a resolver problemas gnoseológicos no significa que la gnoseología se quede sin campo de estudio; las ciencias cognitivas también presentan un fondo gnoseológico en el cual apoyan sus nuevas hipótesis. No podemos saber si algún día la gnoseología acabará siendo una ciencia cognitiva más, adquiriendo independencia de la filosofía; lo que sí sabemos, es que la gnoseología representa la cuna de una serie de problemas fascinantes sobre nuestra relación (como sujetos) con el universo (como objeto de estudio).

Pero la epistemología no se ocupa de problematizar sobre los problemas del conocimiento, así, de forma general. Tal vez podríamos ver a la epistemología como "gnoseología especializada", pues se enfoca en problematizar sobre un tipo de conocimiento muy especial: el conocimiento científico. La epistemología es el mejor ejemplo de un enlace de filosofía y ciencia.

La epistemología busca debatir y proponer respuestas a preguntas como ¿qué es el conocimiento científico?, ¿cuáles son los principios filosóficos presupuestos en la investigación científica?, ¿qué es el método científico?, ¿existe "el" método científico como un proceso lineal e inmutable?, ¿cuáles son las diferencias entre ciencia, semiciencia, protociencia y pseudociencia?, ¿son lo mismo ciencia y tecnología?, ¿la ciencia presupone la realidad autónoma y la legalidad del mundo?, ¿cómo se relacionan las teorías científicas con la realidad y la experiencia?, ¿la ciencia puede ir más allá de los fenómenos y la relación entre éstos?, ¿es posible describir las cosas reales con minuciosidad y una precisión perfecta?, ¿qué son las leyes y las explicaciones científicas?, ¿qué función desempeñan las matemáticas en las ciencias factuales?, ¿la filosofía puede desempeñar una función constructiva en la investigación científica?, ¿la ciencia está moralmente comprometida?, ¿existen límites al avance de la ciencia? Cuestionarse sobre los principios, fines y la naturaleza de la ciencia es el primer paso para hacer epistemología.

Mario Bunge enfatiza en esto al decirnos que la epistemología es pues, la filosofía de, en, desde, con y para la ciencia. Filosofía de la ciencia hace referencia al examen filosófico de la ciencia (sus problemas, sus métodos, su estructura, etc.). Filosofía en la ciencia (o más exactamente filosofía de la ciencia en la ciencia) comprende el estudio de las implicaciones filosóficas de la ciencia, el examen de las categorías e hipótesis que intervienen en la investigación científica, o que emergen en la síntesis de sus resultados. Es pues, el estudio de las hipótesis filosóficas que en ciencia se presuponen y se utilizan como punto de partida. La filosofía desde la ciencia sugiere que se trata de una filosofía que hace hincapié en la ciencia, que ha sustituido la especulación sin freno por la investigación guiada en el método científico, teniendo un respeto profundo por los hechos empíricos y por la consistencia lógica. Filosofía con la ciencia trata de una filosofía que acompaña a la ciencia, es decir, una filosofía que está al margen de los logros de la ciencia, que no se pone a especular sinsentidos sobre el ser y el tiempo. Por último, la filosofía para la ciencia sugiere una filosofía que no solo se nutre de la ciencia, sino que aspira a serle útil, que busca servir para establecer, por ejemplo, las diferencias que existen entre la definición y el dato, o entre la verdad factual y la proposición que es verdadera o falsa, independientemente de los hechos. Esta es una filosofía que no sólo escarba en los fundamentos filosóficos que las ciencias admiten, sino que además busca aclarar la estructura y función de los sistemas científicos, señalando relaciones y posibilidades inexploradas.

Pero hablar de filosofía de, en, desde, con y para la ciencia tal vez sea demasiado largo y poco estético. ¿Por qué no mejor utilizar un sólo concepto: epistemología?, o ¿por qué no llamarlo sólo filosofía de la ciencia? Una disciplina que resulta ser, por su objeto de estudio, una metaciencia. Pues bien, un epistemólogo como tal no puede ser un filósofo que pregona una filosofía contra, sobre y/o bajo la ciencia. Una filosofía contra la ciencia (tal como han existido y siguen existiendo) resultará ser una filosofía irracionalista, que desprecia el respeto por los hechos y la consistencia. Una filosofía contra la ciencia resulta ser anticientífica. Este tipo de posturas son las que alimentan doctrinas como las del fundamentalismo religioso, la tecnofobia y el activismo contra la investigación y aplicación científica. Quien filosofa contra la ciencia, o aun al margen de ella, ignorándola por completo (tal como nos dice Bunge) imita a los escolásticos que rehusaban mirar por el anteojo astronómico de Galileo.

Si hablamos de una filosofía sobre la ciencia estamos haciendo referencia a una disciplina superior rectora de las disciplinas científicas. Aunque éste ha sido el anhelo de muchos que en el pasado se han llamado a sí mismos "epistemólogos", lo cierto es que estos intentos no han sido otra cosa más que la burla de los científicos, pues siempre han mostrado grados intolerables de arrogancia combinados con ignorancia científica. Si quieres hacer que la comunidad científica se burle de la filosofía y la desprecie, tan sólo di que la filosofía es superior a la ciencia y que la primera le dice cómo actuar a la segunda.

Por otro lado, la expresión filosofía bajo la ciencia sugiera una posición inversa, como si la filosofía dependiera de forma absoluta de la ciencia. Este error, aunque poco común entre los filósofos que miran sus propuestas casi siempre como superiores a los anteriores, suele ser expresado como una virtud epistemológica. Sin embargo, la filosofía de la ciencia no sólo comporta el examen de los supuestos filosóficos de la investigación científica, sino que tiene derecho a una elaboración creadora de un nivel diferente del científico aunque reposa sobre éste último: el nivel metacientífico.

La comprensión precisa de la epistemología como la principal disciplina filosófica que, estando al margen de la ciencia, la cuestiona, la crítica y la analiza como la manifestación humana que es, probablemente sea el primer paso para comprender la relación tan estrecha entre filosofía y ciencia. Algo importante a comprender es que no todo el que tiene título en filosofía es un epistemólogo, del mismo modo que el no tener título en filosofía no significa que no se sea (o no se pueda ser) epistemólogo. Existen filósofos con perspectiva científica y científicos con inquietudes filosóficas que enriquecen por igual esta disciplina fascinante. Un segundo paso para este mismo propósito sería hablar de los logros e importancia de la epistemología para con la investigación, la aplicación y la divulgación de la ciencia, pero eso ya será tema para otra entrada.

*Publicación original en La pipa de Russell.

 


 

Acerca del Autor:

Daniel Galarza Santiago es estudiante de filosofía en el Centro Universitario de Ciencias Sociales y Humanidades (CUCSH) de la Universidad de Guadalajara. Autor de los blogs El escéptico de Jalisco y La pipa de Russell, también ha colaborado en otros espacios en línea tales como Blog Escéptico, Despertando Mentes, Magufobusters, Escépticos Unidos Mexicanos y Fundación Richard Dawkins para la Razón y la Ciencia.